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Lecture 1: Quantum Merlin-Arthur class
Sept 4, 2025 TF: Yeongwoo Hwang, Tina Zhang

1 Quantum Merlin-Arthur protocol

We introduced a QMA protocol informally in Lecture slides. Let’s make an attempt to define
it more precisely. On input |z), some ancilla work register |0) 4, and a register that holds the
witness [1)y;,, the verifier runs a polynomial sized quantum circuit Q. A qubit O is measured in
{]0),|1)} basis and the verifier outputs 1 iff the outcome is |1). Thus, the probability of outputting
Lis [|(11)(1]p @ 1)Q(|z) |0) 4 @ [¥)y;)||>. The maximum probability of success - over all possible
witnesses |¢)) can be expressed as

max ({z @ (0] 4 @ () Q' (IN{1o ® 1)Q (J2) ©[0)4 ® [¥)y)
= [|({z] ® (0], ® 1w)Q' (1) (1] ® 1Q(Iz) @ 0) 4 © 1) . (1)

where || - ||oo denotes the operator norm. Thus, the prover should simply send the eigenstate
corresponding to the largest eigenvalue of the operator on the LHS, which we denote as

Vi = (2] @ (014 © 1w)QT(|1){1lo ® 1)Q(|2) ©[0) 4 ® 1).

We also define
V= (x| @ (0], @ Tw)QT(10)(0]p, ® 1)Q(|z) © [0) 4, © 1).

Note that V0 + V! = 1y,

The fact that quantum prover can send entangled states can make one nervous about the class
QMA. Does QMA admit soundness amplification, like the nice classical classes such as BPP or
the quantum class BQP? Does verifier need to do very non-trivial (still polynomial time) quantum
computation to prevent being fooled by the prover? Remarkably, the ‘lease’ is not all in prover’s
hand and verifier has significant control. We will see that in the following section.

2 Verifier’s power in QMA protocols

2.1 Soundness amplification of QMA protocols

In the above description of QMA, we set the probability of acceptance to be 2/3 (when f(z) =1)
and 1/3 (when f(z) = 0) somewhat arbitrarily. A common CS theme is soundness amplification -
to repeat the protocol in parallel and take majority vote to improve these numbers much closer to
1 or 0. The view that the prover is simply trying to hit the largest eigenvalue of V! gives a simple
proof that the amplification of QMA works. Lets introduce the majority vote protocol formally.

e Let k£ be a natural number. Verifier initializes k copies of the ancilla and & copies of the input
) in the state |z)®* [0)5".
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e Prover sends a quantum state on k copies of W.

e Verifier runs k parallel copies of (0, and then measures all the bits O1, ... O. Let the outcomes
be o1, ... 0.

e Verifier outputs 1 iff o1 +...0p >

(SlE

The success probability of the majority vote protocol across k£ runs on a witness |¢>W1__Wk can
be estimated as follows:

Yo low.. ox)or,. .. ox] ® Q¥ (1) [0)F* @ [}y, w I

01,02,...0% S.t.
01+02+...ok2§

= </(/]‘W1,Wk Z VCEOl ® tee VZ‘Ok |w>W1,Wk :

01,02,...0f S.t.
01+02+---0k2§

Thus, we need to understand the largest eigenvalue of the operator
> VoL ®... Vo
01,...05,€{0,1}:3", 0, >k /2

Since V.2, V! mutually commute, all the operators in the sum commute. So the maximum success
probability is

Yoo Vvl = > I e ® 1V oo
b1,...bge{0,1} s.t. b1,...bp€{0,1} s.t.
> bi>k/2 o > bi>k/2

Lets consider the case f(x) = 0, where recall that ||V;!|| < 1/3. So the maximum success probability
is

S eyl S R v
b1,...bp€{0,1} s.t. b1,...b€{0,1} s.t.
> bi>k/2 > bi>k/2

= Yo VD=V

b1,...bp€{0,1} s.t.
> bi>k/2

— k),

where the last line uses a Chernoff bound and the fact that ||[V,|| > 2/3. In the yes case, the largest
eigenvalue can be lower bounded in a similar manner.
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Note that we are crucially using the fact that V.2, V. commute. This would not be needed if
VY]] < £ in the no case. However, amplification should also work if ||[V?[| ~ § — m, in
which case the above approach seems necessary.

2.2 Soundness amplification from one witness

A remarkable observation due to Marriot and Watrous is that a sequential repetition using only
one witness suffices for amplification.

Define the projectors I} = QT(|1)(1], ® 1)Q and Iy = 14 ® |z)(z| ® [0)(0|, (dropping the
label z for convenience). Then comparing with eq. , the maximum success probability - denoted
pz - is equivalently the largest eigenvalue of IIxII;1II5. Invoking Jordan’s lemma (see Section 1,
Pages 2-4 of Regev’s lecture)), consider the two dimensional subspace where the component of I,
is |w) := [¢z)y @ |x) @ [0) 4 (where |t;)y;, achieves the eigenvalue p, for IIoII;II5). Let the vector
orthogonal to it be ‘wL> and |v) be the component of II;, with the orthogonal vector |UL> (Figure

).

Figure 1: Vectors appearing in the Marriott-Watrous amplification. The overlap between |v) , |w)
iS /Pz-

Consider the following algorithm Aj;.
e Measure according to {II;, 1 —II; } and then according to {II, 1 — II5}.

The action of the algorithm is depicted in Figure [2| which is immediate from Figure

|w) [v) |w)

R

|w

Figure 2: Action of the algorithm A; on the input states |w) and |wL>. The red transitions occur
with probability p, and the blue transitions occur with probability 1 — p,.

The important point is that because Jordan’s Lemma breaks down the full space into subspaces
of dimension at most 2, the operators II; and IIs keep us within that 2 dimensional space. At
each round, the algorithm A; essentially flips a {py, 1 — p, }-biased coin (with heads being the first
outcome). We repeat it N = O(ﬁ) times and accept if there are more than N<}® “heads”.
Else we reject. Once again applying a Chernoff bound, this achieves the desired amplification.
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https://cims.nyu.edu/~regev/teaching/quantum_fall_2005/ln/qma.pdf

2.3 QMA verification in logarithmic depth

A nice fact about famous quantum algorithms - such as Shor’s algorithm and quantum Fourier
transform - is that they can run in relatively low depth (logarithmic) with clever parallelization.
But its not known if all problems in BQP can be solved in log depth.

We will see here that a QMA verifier can run in logarithmic depth and in fact there much more
structure to the verification. This is the power of the soundness condition. We will use Rosgen’s
protocol (and later in the course look at another way to do so, using the detectability lemma). The
idea is to consider any verification protocol and ask the prover to share all the quantum states at all
times of the computation. The states at time ¢ and ¢ 4 1 are compared via a multi-qubit swap test
(conjugating out the action of depth one unitary between these times). The multi-qubit swap test
can itself be performed by preparing a CAT state, so the overall protocol requires only logarithmic
depth.

Frontiers of Quantum complexity-4


https://arxiv.org/pdf/0712.2595

	Quantum Merlin-Arthur protocol
	Verifier's power in QMA protocols
	Soundness amplification of QMA protocols
	Soundness amplification from one witness
	QMA verification in logarithmic depth


