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1 Wrapping up lecture 3 (Feynman-Kitaev clock encoding)

Last lecture we discussed the Feynman-Kitaev construction for the QMA verifier of witnesses for
the Local Hamiltonian problem and sketched a proof for QMA-completeness of the problem. The
idea was to introduce a clock register keeping track of which step of the quantum circuit was
being simulated, and to define a Hamiltonian penalizing states with invalid histories. However, the
particular choice of encoding for the clock was left unspecified.

As a reminder, the propagation term of the Hamiltonian is of the form

1⊗ |t⟩ ⟨t|+ 1⊗ |t+ 1⟩ ⟨t+ 1| − Ut ⊗ |t+ 1⟩ ⟨t| − U †
t ⊗ |t⟩ ⟨t+ 1|

for time t. Kitaev’s insight is to use a unary encoding for the clock, also known as the domain wall
encoding. So, for t = 0, 1, ..., T , the clock register has T qubits, with

∣∣0̂〉 = |000...0⟩,
∣∣1̂〉 = |100...0⟩,∣∣2̂〉 = |110...0⟩, and so on.

This encoding is nice for two reasons. First, we only need 3 qubits from the clock register to
recognize a clock transition t ↔ t + 1; for the 3-qubit neighborhood around the clock bit ct, we
have the identification

|t+ 1⟩ ⟨t| ↔ |110⟩ ⟨100| (1)

For any other time t′ encoded in unary, the 3-qubit neighborhood around ct would either be all
zeros or all ones, so we can uniquely identify the clock transition.

Second, we can easily penalize invalid time encodings; since every “0” bit must be followed
by another “0” bit, the following Hamiltonian on the clock register penalizes non-domain wall
configurations:

Hformat =
∑
t

|01⟩ ⟨01|t,t+1 (2)

This adds an energy penalty to any state with a bitstring containing the sequence “01”.
Now, the clock control only requires three clock qubits, and the unitary Ut acts on at most two

qubits. We can thus strengthen our statement on QMA-completeness of the Local Hamiltonian
problem, which we could previously only state for ⌈log T ⌉+2-local terms for a binary clock encoding:

Theorem 1.1. The 5-Local Hamiltonian problem is QMA-complete.

2 Physical Hamiltonians

There are a number of constraints and characteristics on physically realizable and practical Hamil-
tonians. Not all of these are strictly necessary, but typical physical Hamiltonians will have at least
some of these properties outlined below.
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1. Lattice geometry: many physical Hamiltonians are defined on a (not necessarily rectangular)
lattice. One example is the toric code.

2. Translational invariance: under spatial translation of the system by a fixed vector, the Hamil-
tonian describing the dynamics of the system doesn’t change.

3. Nearest-neighbor interactions: many physical Hamiltonians describing many-body systems
have interactions only between physically adjacent particles, and thus have largely 2-local
terms.

4. Some systems are described by specific models, such as the Bose-Hubbard model, Fermi-
Hubbard model, and the Heisenberg model.

Using the Feynman-Kitaev clock construction, we have been able to show QMA-hardness for
5-local Hamiltonians. However, often these kinds of Hamiltonians don’t describe physical systems
very well, so we would like to also say something about the hardness for physical Hamiltonian
problems. Hardness results for physical Hamiltonians would allow us to, for example, talk about
which kinds of quantum simulation and ground-state problems are tractable. One tool allowing us
to prove hardness results for these kinds of physical Hamiltonians are perturbation gadgets.

3 Perturbation Gadgets (Kempe-Kitaev-Regev)

Our goal with perturbation gadgets is to replace awkward k-local Hamiltonian terms with more
realistic 2-local interactions on the system with additional ancillas such that the low-energy effective
Hamiltonian on the system approximates the original Hamiltonian. Our main result is the following:

Theorem 3.1. Given a k-local Hamiltonian H on a system S, there exists a ⌈k/2⌉-local Hamil-
tonian Hsim on the system S and ancillas A and a unitary (often shallow circuit) U such that
U †HsimU ≈ H on the zero-ancilla subspace. This unitary U is known as the Schrieffer-Wolff
transform.

Classical example/motivation

Suppose we have a 4-body Hamiltonian, Hcl = −Z1 ⊗Z2 ⊗Z3 ⊗Z4. We have a ground state when
the parity of the four bits is even. We motivate the idea of perturbation gadgets by asking how we
can reproduce this parity check using only 3-local terms.

One straightforward solution is to introduce an ancilla bit; call the parity check operator on the
ancilla Za. Then, our 3-local terms are H1 = −Z1 ⊗ Z2 ⊗ Za and H2 = −Z3 ⊗ Z4 ⊗ Za, and we
have that Hsim = H1 +H2. Then, H1 is minimized when Za measures the same parity as Z1 ⊗Z2,
and H2 is likewise minimized when Za measures the same parity as Z3 ⊗ Z4. By minimizing Hsim

over the ancilla bit, we see that the ground state exhibits even parity among the four original bits,
which is what we desired for approximating Hcl.

Actually, for the classical case, our effective Hamiltonian matches the target exactly up to a
constant. The main insight from the classical case was to couple the ancilla to the existing bits and
impose constraints making the ancilla equal to the combined parity of bit groupings, thus forcing
the ground state of the resulting sum of 3-local terms to agree with the original. We now want
to move on to the quantum case; we can no longer minimize over the ancilla bits however, so our
approach will be different.
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Quantum attempt

Again, suppose we have a 4-body Hamiltonian, H = −Z1 ⊗ Z2 ⊗ Z3 ⊗ Z4 −X1 ⊗X2 ⊗X3 ⊗ 14.
We introduce two ancilla qubits, measured by Z5 and X6 respectively.

We then attempt to build up the 3-local Hamiltonian:

Hsim = HZ
1 +HZ

2 +HX
3 +HX

4

= − (Z1 ⊗ Z2 ⊗ Z5)− (Z3 ⊗ Z4 ⊗ Z5)− (X3 ⊗ 14 ⊗X6)− (X1 ⊗X2 ⊗X6)

This approach fails, however! The ground states of Hsim are entangled between the original
qubits and the ancilla qubits, so we cannot maintain the ground state if we project to the zero-
ancilla subspace, as we will see with a quick calculation.

Consider 3-local terms acting on the third qubit HZ
2 = −Z3⊗Z4⊗Z5 and HX

3 = −X3⊗14⊗X6.
For simplicity, SinceHZ

2 +HX
3 commutes with Z4, we can simplify our analysis to−Z3⊗Z5−X3⊗X6.

These terms anticommute, so there is no state of qubit 3 which can be a simultaneous eigenstate
of both terms. Therefore, the ground state must entangle the third qubit with the ancilla qubits.

What we need to do is to overcome this problem is to force the ancilla qubits into a fixed state
to avoid entanglement. We can do this by imposing a penalty term on the ancilla to, roughly
speaking, keep them in a fixed state.

Introducing perturbation gadgets

This time, as we build up Hsim, we begin with a large penalty term on the ancilla qubits:

∆ |1⟩ ⟨1|5 +∆ |1⟩ ⟨1|6
We then perturb the penalty by δH ≡ J (H1 +H2 +H3 +H4), with ∆ ≫ J , to obtain

Hsim = ∆(|1⟩ ⟨1|5 + |1⟩ ⟨1|6) + J (H1 +H2 +H3 +H4) (3)

with H1 = Z1 ⊗ Z2 ⊗X5, H2 = Z3 ⊗ Z4 ⊗X5, H3 = X3 ⊗X4 ⊗X6, H4 = X1 ⊗X2 ⊗X6.
Why does this work? First, note that if one of the ancilla bits is in the excited state, we incur

a penalty of ∆, and a penalty of 2∆ if both are excited. Therefore, for the unperturbed simulation
Hamiltonian, the ground state is achieved when both ancilla bits are in their ground states.

We will see this more precisely, but using Schrieffer-Wolff transformations to treat Hsim terms
with perturbation theory, we can get the effective Hamiltonian on the low-energy subspace (that
is, the zero-ancilla subspace) to well approximate H. The perturbative terms H1 and H2 induce
transitions |0⟩5 → |1⟩5 → |0⟩5 due to the X5 operator, and the perturbative terms H3 and H4

induce the same kind of transition on the “6” ancilla qubit. Therefore, the effective Hamiltonian
looks like

Heff = − (Z1 ⊗ Z2 ⊗ Z3 ⊗ Z4)− (X1 ⊗X2 ⊗X3 ⊗X4)

which is what we desire.

3.1 Introducing the Schrieffer-Wolff Transformation

To show how the perturbation theory expansion works, we restrict our attention to a single ancilla,
and consider involutory operators A and B on disjoint parts of the system so that H = A ⊗ B.
Then, our simulated Hamiltonian is constructed by perturbing the penalty term on the ancilla:

Hsim = ∆ |1⟩ ⟨1|a + J (A⊗ 1+ 1⊗B)⊗Xa (4)
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again with ∆ ≫ J > 0. Note that since A and B act on disjoint parts of the system, [A,B] = 0.
We can visualize Hsim as a block-diagonal matrix in the computational basis of the ancilla

{|0⟩a , |1⟩a}:

Hsim =

(
0 J(A+B)

J(A+B) ∆1

)
(5)

which can now be diagonalized. All of the blocks commute with each other, so our eigenvalues are
exactly

λ± =
∆

2
±

√(
∆

2

)2

+ J2(A+B)2 (6)

Since ∆ ≫ J , A2 = 1, and B2 = 1, we can do a perturbative expansion on the eigenvalues, and
our diagonalized Hamiltonian Λ = UHsimU

† is

Λ =

(
−J2(A+B)2

∆ 0

0 ∆1+ J2(A+B)2

∆

)
+O

(
J4

∆3

)
(7)

for unitary U . Choosing J =
√
∆, we get that the low-energy term is now −(A + B)2, the high-

energy term is now ∆1+ (A+B)2, and the higher-order terms are O(1/∆). It turns out that the
unitary U has a nice form as well:

U ≡ eS = e
−i J√

∆
(A+B)⊗Ya = e−i(A+B)⊗Ya (8)

Finally, since A and B commute with each other and are involutory, (A+B)2 = 21+ 2AB up
to a constant. So, the lower-energy part of the system, Heff, matches with the desired Hamiltonian
closely in the zero-ancilla subspace.

In the example above, A and B correspond to H1 and H2 respectively to get the term (Z1 ⊗
Z2 ⊗ Z3 ⊗ Z4) in the effective Hamiltonian. They similarly correspond to H3 and H4 to get the
(X1 ⊗X2 ⊗X3 ⊗X4) term in Heff.

3.2 Proof Sketch of Theorem 3.1

We can generalize the approach for perturbation gadget treatments to Hamiltonians with multiple
k-local terms. For k-local Hamiltonian H =

∑
α bαPα, our simulated Hamiltonian has the form

Hsim =
∑
α

bα

(
P (1)
α + P (2)

α

)
+∆

∑
g

|1⟩ ⟨1|g (9)

Then, treating it with the Schrieffer-Wolff transformation, we have that the effective Hamiltonian
in the zero-ancilla subspace is given by eiSHsime

−iS , with the relation being approximate when S
is a shallow circuit.
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