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1 Classical Random Hamiltonians

Random Hamiltonians have been studied for a long time in the classical setting, including in
Wigner’s surmise| about spectra of heavy nuclei. We’ll discuss the theory of spin glasses.

In the Curie-Weiss model of magnetism from the previous lecture, we had (with no external mag-
netic field) the Hamiltonian
H x Z 0;0;j.

Instead, imagine a material with some defects, in which case the couplings between the spins might
be some random matrix J;;:

1

H=— Z Jijoi0;.

N 1<j
By N we denote the number of particles, so the LN normalization factor maintains an O(N) scaling
of the energy in the particle number. If additionally the J;; are normally distributed, we refer to
this as the Sherrington-Kirkpatrick (SK) model. The Gibbs distribution for a fixed choice of
J looks like Pr(¢) o« exp(Hj(5)). In most cases (such as, perhaps, a fixed background lattice
with impurities) it is not useful physically motivated of the J;; as dynamical variables; we call this
“quenched disorder.”

We would like to compute the partition function

In particular, we generally want to look at —log Z, because most physical quantities are easily
expressed in terms of its derivatives. People tried to computed —logE[Z], where the expectation
value is over instances of J; we call this quantity the annealed free energy. It turns out this is
only a good approximation in the large temperature limit, since otherwise the expectation value is
dominated by extreme values of J. Instead, it is more helpful to compute E[— log Z], the so-called
“quenched free energy.”

Edwards and Anderson used the “replica trick”

m—1
log Z = lim ,
m—0 m

because powers are easier to work with and one would hope for the expectation value and limit
to commute. This is particularly helpful because E[Z?] is the partition function for two copies of
the original system, provided that they always have the same disorder J;;. So one can compute
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(Z™ —1)/m for m = 2,3,---, and hope that the solution resembles some analytic function that
they can evaluate as m — 0.

This trick can be shown to lead to some strange predictions, such as negative entropies. Parisi gave
a consistent appraoch and an exact formula, studying the “clustering” of subsystems of the Z™
system. He found that

1
lim —E[Ey| ~ .
im N [Eo) 763,

n—oo

where Ej is the ground state of the SK system.

In 2018, Montanari provided an algorithm which given J and some ¢ > 0, provides a configuration &
such that the energy is within 1 — e of the ground state, with time complexity C(e)n?. Interestingly,
computing the ground state exactly is NP-hard.

2 Random Quantum Hamiltonians

2.1 Language of the Following Models

In “second-quantization,” we label multi-particle states by the number of particles in each state.
Thus we can consider “creation” and “annihilation” operators a; and a;-r whose action on a state is
to add a particle to that state. If these are for electrons, and the ground state is |0), then af |0) is
a state with a single electron. For fermions, we have the anticommutators {a;,a;} = {a;r, a}} =0,
and {a;, a;} = 0,5, where §;; is the Kronecker delta.

2.2 The SYK Model

For our purposes, we can rewrite the fermionic creation and annihilation operators in terms of
Majorana fermions yx; satisfying {x;, x;} = d;; andx; = XZT‘ (which physically means they are their
own antiparticles!). In terms of these, our system of interest is the SYK Model (different names
than the SK model),

Hsyk = Z JijrIXiXj Xk X1-

Here the coefficients J;j;; are Gaussian with zero mean.

We’re interested in the ground state energy. The operators n; := azai are “number operators,” in
that their eigenstates are those with definite particle number and their eigenvalues are simply the
particle numbers. We have [n;,n;] = 0. The idea is that by taking degree two combinations of the
anticommuting x fields, we get objects which commute. So writing the Hamiltonian in terms of the
operators x;x; and xxX;, we get something resembling the Hamiltonians in the previous section.
These ideas were used to show that finding the ground state energy is NP-hard in the worst case
and in fact QMA-hard as well.

By the way, the algebra of N Majorana fields can be realized on % qubits by setting xy1 = X ® I ®
@R xe=YRIR R, xys3=YRXRI® - Q,xu=YRZRI®---®1, and so on.

Physics heuristics can approximate Ey(Hgsy ) ~ 2—\1/5\/77, and an algorithm can certify that Ey <
V14 +v6y/n. A quantum algorithm can output a state p such that tr(pHgyx) = Q(y/n) (by the
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variational principle, this upper bounds the ground state energy). These states can be shown to
necessarily highly entangled.

The idea behind this “Sum of Squares” algorithm is that if we want the bound Ey < 7, it suffices
to show that n — H =), pjpi, where the p; are polynomials in the Majorana fermion fields (this
is because the p; are Hermitian, so their squares are positive semidefinite).

If we write

1
Hsyg = 7n > xaim
%

where 7; 1= ijkyl VndijrxixeXi, for a state ¢ we can write

2

(Hsy o = <[ (wlxemle)

7

X; ) ‘

% i

> <wm2|w>'.

The inequality is due to Cauchy-Schwartz, and the cancellation is because for Majorana fermions
x' = x and so the number operator is x2. Thus, the sum on 4 counts the number of particles.
Because of some symmetry considerations (?), (1|7?|¢) is degree 4. In paritcular, one can write

S =bol+ > bijmXiX;XeXi
i Ty

for some coefficients by, b;j;. By reasoning about the 7; with some graph ideas, it seems a bound
Ey < O(n) is achieved.

In a toy Hamiltonian, one might write

H=i(xax2 +x3x4 + - Xn—-1Xn)-

We had previously viewed Majorana fermions as the real and complex parts of other fermion
fields, so if we pair them back up, this Hamiltonian is like the Hamming weight of a binary string.
In this case, the ground state would be like p = |11---1)11---1| (I suppose what we're calling
|1) and |0) here is a matter of notation). In terms of the Majorana fermion fields, this state is

p = —=xix2)(I —x3xa) -
Back in the SYK model, our actual Hamiltonian is
H=i(xam +xoma + ).

Schematically, we would like our solution to look like p = (I — x171)(I — x272) - -, but this is not
exactly right — it is not even clear that this is a valid density matrix. The solution is to adjoin
n more Majorana fermions (5 qubits) 01,09, , 0y, write the previous expression with the o; in
place of the 7;, and then apply a unitary to “rotate” the 7; back into place. That is,

p= 6—it >oitios (I _ X101)(I _ X20-2) C (I _ XnO'n)eitZi tidi‘
“It’s not at all clear why this should make any sense.” It can be shown that some value of ¢ gives

a good approximation for the ground state energy.

Frontiers of Quantum complexity-3



	Classical Random Hamiltonians
	Random Quantum Hamiltonians
	Language of the Following Models
	The SYK Model


