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1 Classical Random Hamiltonians

Random Hamiltonians have been studied for a long time in the classical setting, including in
Wigner’s surmise about spectra of heavy nuclei. We’ll discuss the theory of spin glasses.

In the Curie-Weiss model of magnetism from the previous lecture, we had (with no external mag-
netic field) the Hamiltonian

H ∝
∑

σiσj .

Instead, imagine a material with some defects, in which case the couplings between the spins might
be some random matrix Jij :

H =
1√
N

∑
i<j

Jijσiσj .

By N we denote the number of particles, so the 1√
N

normalization factor maintains an O(N) scaling

of the energy in the particle number. If additionally the Jij are normally distributed, we refer to
this as the Sherrington-Kirkpatrick (SK) model. The Gibbs distribution for a fixed choice of
J looks like Pr(σ⃗) ∝ exp(HJ(σ⃗)). In most cases (such as, perhaps, a fixed background lattice
with impurities) it is not useful physically motivated of the Jij as dynamical variables; we call this
“quenched disorder.”

We would like to compute the partition function

Z =
∑
σ⃗

exp

− β√
N

∑
i<j

Jijσiσj

.
In particular, we generally want to look at − logZ, because most physical quantities are easily
expressed in terms of its derivatives. People tried to computed − logE[Z], where the expectation
value is over instances of J ; we call this quantity the annealed free energy. It turns out this is
only a good approximation in the large temperature limit, since otherwise the expectation value is
dominated by extreme values of J . Instead, it is more helpful to compute E[− logZ], the so-called
“quenched free energy.”

Edwards and Anderson used the “replica trick”

logZ = lim
m→0

Zm − 1

m
,

because powers are easier to work with and one would hope for the expectation value and limit
to commute. This is particularly helpful because E[Z2] is the partition function for two copies of
the original system, provided that they always have the same disorder Jij . So one can compute
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(Zm − 1)/m for m = 2, 3, · · · , and hope that the solution resembles some analytic function that
they can evaluate as m→ 0.

This trick can be shown to lead to some strange predictions, such as negative entropies. Parisi gave
a consistent appraoch and an exact formula, studying the “clustering” of subsystems of the Zm

system. He found that

lim
n→∞

1

N
E[E0] ≈ .763,

where E0 is the ground state of the SK system.

In 2018, Montanari provided an algorithm which given J and some ϵ > 0, provides a configuration σ⃗
such that the energy is within 1−ϵ of the ground state, with time complexity C(ϵ)n2. Interestingly,
computing the ground state exactly is NP-hard.

2 Random Quantum Hamiltonians

2.1 Language of the Following Models

In “second-quantization,” we label multi-particle states by the number of particles in each state.
Thus we can consider “creation” and “annihilation” operators ai and a

†
i whose action on a state is

to add a particle to that state. If these are for electrons, and the ground state is |0⟩, then a† |0⟩ is
a state with a single electron. For fermions, we have the anticommutators {ai, aj} = {a†i , a

†
j} = 0,

and {ai, a†j} = δij , where δij is the Kronecker delta.

2.2 The SYK Model

For our purposes, we can rewrite the fermionic creation and annihilation operators in terms of
Majorana fermions χi satisfying {χi, χj} = δij andχi = χ†

i (which physically means they are their
own antiparticles!). In terms of these, our system of interest is the SYK Model (different names
than the SK model),

HSY K =
∑

Jijklχiχjχkχl.

Here the coefficients Jijkl are Gaussian with zero mean.

We’re interested in the ground state energy. The operators ni := a†iai are “number operators,” in
that their eigenstates are those with definite particle number and their eigenvalues are simply the
particle numbers. We have [ni, nj ] = 0. The idea is that by taking degree two combinations of the
anticommuting χ fields, we get objects which commute. So writing the Hamiltonian in terms of the
operators χiχj and χkχl, we get something resembling the Hamiltonians in the previous section.
These ideas were used to show that finding the ground state energy is NP-hard in the worst case
and in fact QMA-hard as well.

By the way, the algebra of N Majorana fields can be realized on N
2 qubits by setting χ1 = X ⊗ I ⊗

· · · ⊗ I, χ2 = Y ⊗ I ⊗ · · · ⊗ I, χ3 = Y ⊗X ⊗ I ⊗ · · · ⊗ I, χ4 = Y ⊗ Z ⊗ I ⊗ · · · ⊗ I, and so on.

Physics heuristics can approximate E0(HSY K) ≈ 1
2
√
2

√
n, and an algorithm can certify that E0 ≤√

1 +
√
6
√
n. A quantum algorithm can output a state ρ such that tr(ρHSY K) = Ω(

√
n) (by the
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variational principle, this upper bounds the ground state energy). These states can be shown to
necessarily highly entangled.

The idea behind this “Sum of Squares” algorithm is that if we want the bound E0 ≤ η, it suffices
to show that ηI −H =

∑
i p

†
ipi, where the pi are polynomials in the Majorana fermion fields (this

is because the pi are Hermitian, so their squares are positive semidefinite).

If we write

HSY K =
1√
n

∑
i

χiτi,

where τi :=
∑

j,k,l

√
nJijklχjχkχl, for a state ψ we can write

|⟨HSY Kψ⟩|2 =
1

N

∣∣∣∣∣∑
i

⟨ψ|χiτi|ψ⟩

∣∣∣∣∣
2

≤
���

����
��

1

N

∣∣∣∣∣∑
i

⟨ψ|χ2
i |ψ⟩

∣∣∣∣∣
∣∣∣∣∣∑

i

⟨ψ|τ2i |ψ⟩

∣∣∣∣∣.
The inequality is due to Cauchy-Schwartz, and the cancellation is because for Majorana fermions
χ† = χ and so the number operator is χ2. Thus, the sum on i counts the number of particles.
Because of some symmetry considerations (?), ⟨ψ|τ2i |ψ⟩ is degree 4. In paritcular, one can write∑

i

τ2i = b0I +
∑
i,j,k,l

bijklχiχjχkχl

for some coefficients b0, bijkl. By reasoning about the τi with some graph ideas, it seems a bound
E0 ≤ O(n) is achieved.

In a toy Hamiltonian, one might write

H = i(χ1χ2 + χ3χ4 + · · ·χn−1χn).

We had previously viewed Majorana fermions as the real and complex parts of other fermion
fields, so if we pair them back up, this Hamiltonian is like the Hamming weight of a binary string.
In this case, the ground state would be like ρ = |11 · · · 1⟩⟨11 · · · 1| (I suppose what we’re calling
|1⟩ and |0⟩ here is a matter of notation). In terms of the Majorana fermion fields, this state is
ρ = (I − χ1χ2)(I − χ3χ4) · · · .

Back in the SYK model, our actual Hamiltonian is

H = i(χ1τ1 + χ2τ2 + · · · ).

Schematically, we would like our solution to look like ρ = (I − χ1τ1)(I − χ2τ2) · · · , but this is not
exactly right – it is not even clear that this is a valid density matrix. The solution is to adjoin
n more Majorana fermions (n2 qubits) σ1, σ2, · · · , σn, write the previous expression with the σi in
place of the τi, and then apply a unitary to “rotate” the τi back into place. That is,

ρ = e−it
∑

i tiσi(I − χ1σ1)(I − χ2σ2) · · · (I − χnσn)e
it
∑

i tiσi .

“It’s not at all clear why this should make any sense.” It can be shown that some value of t gives
a good approximation for the ground state energy.
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