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Instructions

You may work with collaborators and consult textbooks or other references, but please list your
collaborators and cite any references you use.

Background

The von Neumann entropy of a quantum state ρ is defined as S (ρ) = −Tr (ρ log ρ). Umegaki’s
relative entropy between two quantum states ρ, σ is defined as D (ρ∥σ) = Tr (ρ log ρ)−Tr (ρ log σ).

Symmetric subspace: given two systems A,B (with isomorphic Hilbert spaces H) of dimension d
each, the symmetric subspace is Πsym = span{|ψ⟩A⊗|ψ⟩B , ∀ |ψ⟩ ∈ H}. The swap test (see problem

set 0) checks whether a vector is in the symmetric subspace. In other words, Πsym =
1+SwapA,B

2 .

Q1: PP and friends (6 points)

In class we didn’t quite finish the proof that QMA ⊆ PP. Let’s deal with some of the loose ends
now.

(a) (1 point) We say a function f : {0, 1}∗ → Z is in GapP if there is a Turing machine M such
that f(x) is equal to the difference between the number of accepting and rejecting paths of
M . (If you prefer to think about randomized algorithms, f(x) is the difference between the
number of random seeds that case the algorithm M to output YES and NO).

Suppose f and g are GapP-computable functions. Show that h(x) = f(x)g(x) is also in GapP.

(b) (2 points) Suppose we have two 2n×2n matrices A(n), B(n) whose entries are all computable

in GapP: that is, the functions f(i, j) = A
(n)
ij and g(i, j) = B

(n)
ij are in GapP. Show that the

entries of
C(n) = A(n)B(n)

are computable in GapP as well.

(c) (2 points) Let U = U1 . . . Ut be the unitary corresponding to a quantum circuit built out of
gates U1, . . . , Ut. The entries of U cannot be GapP functions, since they are not integers in
general. Show nonetheless that if the circuit is built out of Hadamard and Toffoli gates only,
that each entry of U can be written as

Uij =
f(i, j)√
2k(n)

,

where k(n) is efficiently computable and 0 ≤ k(n) ≤ t.

(d) (1 point) Argue that, given a QMA verifier circuit, there exists a GapP function f and an
efficiently computable k(n) = poly(n) such that

• If x is a YES instance, then f(x) ≥ 0.9 · 2k(n).
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• If x is a NO instance, then f(x) ≤ 0.1 · 2k(n).

(Hint: consider the acceptance probability of the circuit on a random input, as discussed in
class.) From here, it’s not too hard to obtain containment in PP (but you do not need to do
it here).

Q2: Circuit-to-Hamiltonian for simple quantum circuits (5 points)

Here we will look at circuit-to-Hamiltonian mappings for simple classes of quantum circuits, and
try to understand why they do not generalize to general quantum circuits. This helps us appreciate
the power of the Feynman-Kitaev mapping.

(a) (1 point) Suppose U = U1 . . . UT is a quantum circuit of depth d on n qubits, that is
U = V1V2 . . . Vd, where Vi is a layer of gates on n qubits in which no two gates overlap.
Consider the state U |0⟩n. Show that this state is the unique ground state of the Hamiltonian
HU =

∑
i U |1⟩⟨1|i U †.

(b) (1 point) In the above construction, what is the locality of the Hamiltonian HU? What is
the spectral gap of HU? Why is HU not a good option for QMA-completeness of the local
Hamiltonian problem?

(c) (1 point) Next, consider a quantum circuit W = W1 . . .WT on a d dimensional quantum
system HS . Consider the quantum state W |0⟩, where |0⟩ is a fixed state in HS . Introduce
T + 1 copies of HS , labelled S0, S1 . . . ST , and consider the Hamiltonian

HW =

T−1∑
i=0

(1⊗ (Wi+1)Si+1)(1−Πsym,Si,Si+1)(1⊗ (Wi+1)
†
Si+1

).

Prove that the ground space of HW is

span{|ψ⟩S0
⊗W1 |ψ⟩S1

⊗W2W1 |ψ⟩S2
⊗ . . . (WT . . .W1) |ψ⟩ST

, ∀ψ ∈ HS}.

(d) (1 point) Write down the ground space of (1− |0⟩⟨0|)S0 +HW .

(e) (1 point) If S consists of n qubits (d = 2n) and Wi are 2-qubit gates, what is the locality
of HW ? Why is (1 − |0⟩⟨0|)S0 +HW not a good option for QMA-completeness of the local
Hamiltonian problem?

Q3: Jaynes’ principle (3 points)

Jaynes’ principle is an idea from statistical inference, which says that we should model an unknown
system by the maximum entropy distribution consistent with our observations of the system. The
quantum Gibbs state has an elegant interpretation as the maximum entropy state subject to ob-
servational constraints. Consider a collection of Hermitian operators E1, E2, . . . Em. Suppose ρ is
an unknown quantum state with the promise that Tr (ρEi) = µi for all i. Then the quantum Gibbs
state

ρGibbs :=
e−

∑
i λiEi

Tr
(
e−

∑
i λiEi

) ,
for some λi that satisfy Tr (EiρGibbs) = µi is the unique maximizer for S (ρ). We will prove this in
the following questions.

Let’s abbreviate Z = Tr
(
e−

∑
i λiEi

)
as the quantum partition function.
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(a) (2 points) For any quantum state ρ satisfying Tr (ρEi) = µi for all i, show that D (ρ∥ρGibbs) =
S(ρGibbs)− S(ρ).

(b) (1 point) Use the non-negativity of relative entropy to show that S (ρ) ≤ S (ρGibbs). Show
that equality is achieved iff ρ = ρGibbs.

Jaynes’ principle makes (quantum) Gibbs states as a crucial concept in (quantum) learning
theory, allowing their use as a natural ansatz for an unknown (quantum) state, subject to experi-
mentally observable constraints. In fact, this is the reason why the Boltzmann distribution shows up
in statistical mechanics—it is exactly how Jaynes’ principle tells us to describe the unknown state
of O(1023) atoms given only the observed values of macroscopic quantities like pressure, volume
etc.
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