Frontiers of Quantum complexity Instructors: Anand Natarajan, Anurag Anshu

Problem set 1
Due: Thu, Oct 9, 2025 TFs: Yeongwoo Hwang, Tina Zhang

Instructions

You may work with collaborators and consult textbooks or other references, but please list your
collaborators and cite any references you use.

Background

The von Neumann entropy of a quantum state p is defined as S(p) = —Tr(plogp). Umegaki’s
relative entropy between two quantum states p, o is defined as D (p||o) = Tr (plog p) — Tr (plog o).

Symmetric subspace: given two systems A, B (with isomorphic Hilbert spaces H) of dimension d
each, the symmetric subspace is Igym, = span{|y) , ®|¥) g,V 1)) € H}. The swap test (see problem

. . 1+S
set 0) checks whether a vector is in the symmetric subspace. In other words, Il,,, = %.

Q1: PP and friends (6 points)

In class we didn’t quite finish the proof that QMA C PP. Let’s deal with some of the loose ends
now.

(a) (1 point) We say a function f :{0,1}* — Z is in GapP if there is a Turing machine M such
that f(x) is equal to the difference between the number of accepting and rejecting paths of
M. (If you prefer to think about randomized algorithms, f(z) is the difference between the
number of random seeds that case the algorithm M to output YES and NO).

Suppose f and g are GapP-computable functions. Show that h(z) = f(z)g(z) is also in GapP.

(b) (2 points) Suppose we have two 2" x 2" matrices A, B(") whose entries are all computable
in GapP: that is, the functions f(i,7) = Agb) and ¢g(i,j) = Bgl) are in GapP. Show that the
entries of

o) — g gn)
are computable in GapP as well.

(c) (2 points) Let U = U; ... U; be the unitary corresponding to a quantum circuit built out of
gates Uy, ...,U;. The entries of U cannot be GapP functions, since they are not integers in
general. Show nonetheless that if the circuit is built out of Hadamard and Toffoli gates only,
that each entry of U can be written as

fi,j)

Uy =
4 2k(n

)

3

where k(n) is efficiently computable and 0 < k(n) < t.

(d) (1 point) Argue that, given a QMA verifier circuit, there exists a GapP function f and an
efficiently computable k(n) = poly(n) such that

e If 2 is a YES instance, then f(x) > 0.9 - 2F(),
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e If z is a NO instance, then f(z) < 0.1 -2k,

(Hint: consider the acceptance probability of the circuit on a random input, as discussed in
class.) From here, it’s not too hard to obtain containment in PP (but you do not need to do
it here).

Q2: Circuit-to-Hamiltonian for simple quantum circuits (5 points)

Here we will look at circuit-to-Hamiltonian mappings for simple classes of quantum circuits, and
try to understand why they do not generalize to general quantum circuits. This helps us appreciate
the power of the Feynman-Kitaev mapping.

(a) (1 point) Suppose U = U;...Ur is a quantum circuit of depth d on n qubits, that is
U = ViVa...Vy, where V; is a layer of gates on n qubits in which no two gates overlap.
Consider the state U |0)". Show that this state is the unique ground state of the Hamiltonian
Hy =32, U[1)(]; U

(b) (1 point) In the above construction, what is the locality of the Hamiltonian Hy? What is
the spectral gap of Hy? Why is Hy not a good option for QMA-completeness of the local
Hamiltonian problem?

(c¢) (1 point) Next, consider a quantum circuit W = Wi ... Wr on a d dimensional quantum
system Hg. Consider the quantum state W |0), where |0) is a fixed state in Hg. Introduce
T + 1 copies of Hg, labelled Sy, S7...S7, and consider the Hamiltonian

T—1
Hy = Z(]l ® (Wi+1)5i+1>(]1 - Hsym75i75i+1)(]l @ (Wi-&-l)TSiH)'
=0

Prove that the ground space of Hyy is
span{|1))g, ® W1 |1h)g, ® WaWi [¢)g, ® ... (Wr ... W1) |1h)g Vi) € Hs}.

(d) (1 point) Write down the ground space of (1 — |0)(0|)s, + Hw -

(e) (1 point) If S consists of n qubits (d = 2") and W; are 2-qubit gates, what is the locality
of Hw? Why is (1 — |0)(0])s, + Hw not a good option for QMA-completeness of the local
Hamiltonian problem?

Q3: Jaynes’ principle (3 points)

Jaynes’ principle is an idea from statistical inference, which says that we should model an unknown
system by the maximum entropy distribution consistent with our observations of the system. The
quantum Gibbs state has an elegant interpretation as the maximum entropy state subject to ob-
servational constraints. Consider a collection of Hermitian operators E1, Eo, ... E,,. Suppose p is
an unknown quantum state with the promise that Tr (pE;) = p; for all . Then the quantum Gibbs

state
e~ i N

PCibbs ‘= m7
for some \; that satisfy Tr (E;pgibbs) = s is the unique maximizer for S (p). We will prove this in

the following questions.
Let’s abbreviate Z = Tr (e_ 2 ’\iEi) as the quantum partition function.
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(a) (2 points) For any quantum state p satisfying Tr (pE;) = p; for all 4, show that D (p||pGibbs) =
S(pcivbs) — S(p)-

(b) (1 point) Use the non-negativity of relative entropy to show that S(p) < S (pgibbs). Show
that equality is achieved iff p = paibbs-

Jaynes’ principle makes (quantum) Gibbs states as a crucial concept in (quantum) learning
theory, allowing their use as a natural ansatz for an unknown (quantum) state, subject to experi-
mentally observable constraints. In fact, this is the reason why the Boltzmann distribution shows up
in statistical mechanics—it is exactly how Jaynes’ principle tells us to describe the unknown state
of O(10%3) atoms given only the observed values of macroscopic quantities like pressure, volume
etc.
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